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ABSTRACT

ey

This paper gives guidelines for the development of computer programs for

4

the numerical simulation of semiconductor devices. For this purpose the basic

s SEUTE

mathematical results on the corresponding elliptic boundary value problem are 52
3
reviewed. In particular, existence, smoothness and structure of the solutions S

A AR AR S

of the fundamental semiconductor equations are discussed. Various feasible
approaches to the numerical solution of the semiconductor equations are described.
Much emphasis is placed on constructive remarks to help authors of device simula-
tion programs to make decisions on their code design problems. In particular,
criteria for an optimal mesh generation strategy are given. The iterative soluticn
of the systems of nonlinear and linear equations obtained by discretising the semi-
conductor equations is discussed. An example is given showing the power of these

concepts combined with modern numerical methods in comparison to classical approaches.
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SIGNIFICANCE AND EXPLANATION f‘?*

Many different codes for the simulation of semiconductor devices such as
transitors, diodes, thyristors are already circulated. Most of them solve the
basic set of semiconductor equations in the steady state case, which represents
a nonlinear system of three second order elliptic equations. During the last
15 years this problem has also been the subject of analytical investigations by
researchers from different disciplines. This paper reviews how some results of
these investigations can be used to improve the performance of numerical methods
for solving the semiconductor equations. The qualitative analysis of the problem
shows how appropriate finite difference and finite element methods can be con-
structed and what criteria have to be used in an adaptive mesh selection strategy
in order to require a minimal amount of gridpoints while still providing a

sufficiently accurate solution. Varjous questions concerning the solution of the

large, sparse, nonlinear system of algebraic equations which arise in these calcu-

lations are also discussed.
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IMPLICATIONS OF ANALYTICAL INVESTIGATIONS
ABOUT THE SEMICONDUCTOR EQUATIONS ON DEVICE MODELING PROGRAMS

- * &
Ch. Ringhofer and S. Selberherr

1. Introduction

The characteristic feature of early device modeling is the
separation of the interior of the device into different regions,
the treatment of which could be simplified by various assumptions
like special doping profiles, complete depletion and
quasineutrality. These separately treated regions were simply
put together to produce the overall solution. If results in an
analytically closed form are intended, any other approach is

prohibitive. Fully numerical modeling based on partial
differential equations /61/ which describe all different regions
F;i of semiconductor devices in one unified manner was first

- suggested by Gummel /29/ for the one dimensional bipolar
ff ' transistor. This approach was further developed and applied to
V]’ pn-junction theory by De Mari /13/, /14/ and to IMPATT diodes by
. Scharfetter and Gummel /S50/.

A two dimensional numerical analysis of a semiconductor
device was carried out first by Kennedy and O'Brien /35/ who
investigated the junction field effect transistor. Since then
two dimensional modeling has been applied to fairly all important
semiconductor devices. There are so many papers of excellent
repute that it would be unfair to cite only a few. Recently also
the first results on three dimensional device modeling have been
published. Time dependence has been investigated by e.g. /37/,
/44/ and models in three space dimensions have been announced by

e.g. /8/, /1Y/, /61/, /68/.
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In spite of all these important and successful activities,
the need for economic and highly user oriented computer programs
became more and more apparent in the field of device modeling.
Especially for MOS devices which have evolved since their
invention by Kahng and Atalla /32/ to an incredible standarqd,
modeling in two space dimensions has become inherently important
because current flow controlled by a perpendicular field is an
intrinsically two dimensional problem. One such program which
has been applied successfully in many laboratories is called

CADBET /59/. We have also tried to bridgé that gap and developed
MINIMOS /53/, /S1/ for the two dimensional static analysis of
planar MOS transistors.

2. Analysis of the Static Semiconductor Equations

In this chapter we review some of the existing analytical
results for the fundamental semiconductor equations concerning
existence and structure of their solutions, These results are of
importance in both the theoretical and practical context, since -
as we will see in the next chapter - the knowledge of the
structure and smoothness properties of solutions is indeed
essential for the development of a numerical solution method.
The most familiar model of carrier transport in a semiconductor
device has been proposed by Van Roosbroeck /6l/. It consists of
Poisson's equation (2.1), the current continuity equations for
electrons (2.2) and holes (2.3) and the current ctclations for

electrons (2.4) and holes (?.5)

div €-grad Y= ~g-(p=-n + C) (2.1)
aiv 3 = -q'R (2.2)
div 39 = gq°R (2.3)
'5,‘ = -q*( ¥ °n-grad Y - D -grad n ) (2.4)

. X e + . ’ 2.5
3p q-( ’p pegrad § Dp grad p ) ( )
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These relations form a system of coupled partial
differential equations. Poisson's equation, coming fronm
Maxwell's laws, describes the charge distribution in the interior
of a semiconductor device. The balance of sinks and sources for
electron- and hole currents is characterized by the continuity
equations. The current relations describe the absolute value,
direction and orientation of electron~- and hole currents. The
continuity equations and the current relations can be derived
from Boltzmann's equation by not at all trivial means. It is not

our intention to present in this paper the ideas behind these
considerations. The interested reader is refered to /61/ and its
secondary literature or text books on semiconductor physics e.g.

/1, /3Y/, /52/, /56/.

2.1 The Validity of the Basic Semiconductor Equations

It is of prime importance to be aware that equations (2.4)
and (2.5) are not capable to describe exactly all phenomena
occuring in real devices. For instance, they do not characterize
effects which are caused by degenerate semiconductors (e.g. heavy
doping). /38/, /60/, /63/ discuss some modifications of the
current relations, which partially take into account the
consequences introduced by degenerate semiconductors (e.g.
invalidity of Boltzmann's statistics, bandgap narrowing). These
modifications are not at all simple and lead to problems
especially in the formulation of boundary conditions /47/, /62/.
In case of modeling  MOS devices, degeneracy, owing to the
relatively low doping in the channel region, 1is practically
irrelevant. For modern bipolar devices, though, bearing in mind
shallow and extraordinarily heavily doped emitters, it is an
absolute necessity to account for local degeneracy of the
semiconductor. .

Just as further examples (2.4) and (2.5) do not describe
velocity overshoot phenomena which become apparent at feature
lengths of 0.1Pm for silicon and 1l¥Pm for gallium-arsenide /25/.
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Certainly no effects which are due to ballistic transport (the

-

existence of which is still questionable /30/) are included. The i{;
latter start to become important for feature sizes below 0.01pm E;ﬁ
for silicon and 0.1pPm for gallium-arsenide /26/. Considering the ff:
state of the art of device miniaturization, neither effect has to 5;1
bother the modelists of silicon devices. For gallium-arsenide 'ij
devices new ideas are mandatory in the near future /25/, /46/, '.i
/45/. L
L3

: o 2 B

2.2 Domain and Boundary Conditions o

Most of the existing programs which solve the semiconductor
equations are restricted to a rectangular device geometry. This

ca'a aataiiasasd,

is not essential as far as the analysis of the equations is
concerned. In this chapter we shall assume that the equations
(2.1)-(2.5) are posed in a domain D of R? (n=1,2,3) with a
piecewise smooth boundary 9p. Equations (2.1)-(2.5) are subject
to a mixed set of Dirichlet and Neumann boundary cornditions.
That means 9D consists of three parts 3D=3Df130203D3. 301
denotes the part of the boundary where the device is surrounded

by insulating material. There one assumes the boundary
conditions:
Wi = dn/AR|= Ip/Ai]= 0 (2.6)

Here ﬁl denotes the unit normal vector on @D which exists
anywhere except at a finite number of points (arbitrarily defined
corners of the simulation geometry). 302 denotes the part of the
boundary corresponding to the ohmic contacts. There ¥, n and p
are prescribed. The boundary conditions can be derived from the
applied bias q5 and the assumptions of thermal equilibrium and
vanishing space charge:

WU Wy PR T yY n-p - CmO (2.7) o

”. o

The last two conditions in (2.7) can be rewritten as: '
-l .
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ns= (q C2+4-n12 + C)/2 E!j
(2.8) by

p= cZean? - a2

In many applications it is desired to consider controlled ﬁ:%
r
insulator-semiconductor interfaces (e.g. MOS devices). So 3D3 ..

denotes the part of the boundary which corresponds to such an %jﬂ
interface. There we have the interface conditions: ;

3-8l - 3p-#| =0

(2.9)
€ -dwdn) =€, _-39wan
sem lsem ins llins
Again ]| denotes the normal vector on 9D. €eem 20d €,

denote the permittivity constants for the semiconductor and the
insulator respectively. 3%V3§1| and aqyaﬁil denote the
onesided limits of the de:ivativessggrpendicular toigge interface
approaching the interface. Within the insulator the Laplace
equation: div grad W = 0 holds.

2.3 Dependent Variables

For analytical purposes it is often useful to use other
variables than n and p to describe the system (2.1)-(2.5). Two
other sets of variables which are frequently employed are
(QLQH,Ub) and (Y, u,v) which relate to the set ($,n,p) by:

n= ni-e(qp‘h)/ut' p= ni.e(‘b-Qh/Ug (2.10)
n=n-ePVty, pen Wiy (2.11)

{2.10) can be physically interpreted as the application of
Boltzmann statistics. However (2.10) a.:0 can be regarded as a
purely mathematical change of variables so that the question of
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the validity of the Boltzmann statistics does not need to be ) 5734
considered. The use of (Qh‘h.’b) a priori excludes negative e
carrier densities n and p, which may be present as undesired
nonphysical solutions of (2.1)-(2.5) if we use (¥,n,p) or (WYu,v)
as dependent variables. As we will see later in this chapter the
advantage of the set (J,u,v) is that the continuity equations
(2.2), (2.3) and current relations (2.4), (2.5) become
self-adjoint. This also has an important impact on the use of
iterative schemes for the solution of the evolving linear systems
(cf. chapter 4). However, owing to the enormous range of the
values of u and v, the sets (Y,n,p) or (Qh!h,vb) have’to be
prefered for actual computations. We personally favour the set
(W, n,p).

2.4 The Existence of Solutions and Scaling

The basic answer to the question of existence of solutions
can be found in Mock /43/ or under slightly different assumptions
in Bank, Jerome and Rose /S/. Both proofs are based on
Schauder's fixpoint theorem. They are both valid for arbitrarily
shaped domains and boundary conditions of the type previously
described without an interface (303-{}). Both papers consider
the case of vanishing generation/recombination rate (R=0 in
(2.2), (2.3)). In the setting of Mock (YWu,v) is used as
dependent variables. The equations are scaled so that the
intrinsic carrier density n,, the thermal voltage U; and the
ratio elementary charge/permittivity are equal to unity. Thus,
combining the continuity equations (2.2), (2.3) and current
relations (2.4), (2.5), we have the system:

div grad ¢ = ev'u - e'q'-v -c (2.12)

aiv (e¥.grad u) = 0 (2.13)

atv (e ¥grad v) = 0 (2.14)
—6—
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Then a map M:W*® y is defined (details in /43/ or /4/) such
that the evaluation of M requires the solution of (2.13) and
(2.14) and a fixpoint Qf of M (u(qf)-qf) together ‘with the
according functions (u,v) is a solution of the whole system
(2.12)-(2.14). The existence of a fixpoint is shown by
Schauder's fixpoint theorem. Questions concerning the degree of
smoothness of these solutions (the existence of derivatives) are
discussed in /42/.

However, Schauder's theorem is not constructive and does not
indicate that iterating the map M will actually lead to the
fixpoint. Moreover, it does not give any information about the
structure of the solution which is of vital interest for actual
computations. Since the dependent variables in the system
(2.1)~(2.5) are of different order of magnitude and show a
strongly different behaviour in regions with small and large
space charge the first step towards a structural analysis of
{2.1)~(2.5) has to be an appropriate scaling. A standard way of
scaling (2.1)-(2.5) has been given by De Mari /14/. There Y is
scaled by the thermal voltage Uz, n and p are scaled by ny
(similar to Mock /43/) and the independent variables are scaled
such that all multipying constants in Poisson's equation become
unity. Although physically reasonable this approach has the
disadvantage that n and p in general are still several orders of
magnitude larger than Y. A scaling which reduces Y, n and p to
the same order of magnitude has been given by Vasiliev'a and
Butuzov /65/. This approach makes the system {(2.1)-(2.5)
accessible to an asymptotic analysis which is given together with
applications in /40/, /41/ and /39/. There n and p are scaled by
the maximum absolute value of the net doping C and the
independent variables are scaled by the characteristic length of
the device. More precisely the following scaling factors are

employed.
. quintity symbol value
E ]
X 1 max(x-?), ?,? in D
| 4 Uy k-T/q (2.15)
n,p ¢ max|C|

-7-
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After scaling the equations become:

A2.4aiv grad $=n - p - C (2.16) %
div ( grad n ~ n'grad ¥ ) = -R ..__‘j
div ( grad p + p'grad Y ) = ~R ;1
Here, for simplicity only, J and Pp have been assumed to be ;E
constant. It should be noted that the following analysis also ;5

holds if the usual smooth dependence of ﬂn and J_on n, p and
grad Y e.g./54/ is assumed. Since the independent variable x has
been scaled, equations (2.16) are now posed on a domain p° with

Tt
o
LS Y

maximal diameter equal to one., The small constant 1? multiplying :ig
the Laplacian in (2.16) 1is the minimal Debye length of the tg
device: I
A? . £o0E (2.17) i
12.q-¢ ::%

T

1 and & are defined in (2.15). Thus for high doping (&>>1)
1? will be small. For instance for a silicon device with
characteristic 1length 25Pm and 1!==102°<:m-3 we compute for 2? at

approximate room temperature T=300K: 12-4.10'10.
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R denotes again the scaled generation/recombination rate.
In the analysis given in /41/ the usual Shockley-Read-Hall term
has been used which after scaling is of the form:

r= 0= ¢
n+p+ 2°(?J02

.
! .
* - J
a
r'"-]

P= 1/2 (2.18) e

R is in general a (not necessarily mildly) nonlinear
function of n,p and gradWy. Thus different models of R may

R T
St e T
L
U
2
UL N

influence the analytical results quite drastically. This is A
obviously to be expected as in many operating conditions the ii:
device behaviour depends strongly on the net T

generation/recombination R. T
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2.5 The Sinqular Perturbation Approach p
(2.16) represents a singularly perturbed elliptic system .
with perturbation parameter A. The advantage of this g
interpretation is that we can now obtain information about the :
structure of solutions of (2.16) by using asvmptotic expansions: ;f
In the subdomains of D° where the solutions behave smoothly we j‘
expand them into power series of the form: :3
oo L
-3 i »
vz, d) = Evj() Al w=Whn,p)" (2.19) v

i=0Q

which implies a smooth dependence on A. C - the scaled doping -
is smooth in these subdomains and exhibits a sharp transition
across tue pn-junctions in the device. For the case of an abrupt

4 SONDEORN

junction this behaviour is represented by a discontinuity across
an n-1l dimensional manifold P:(x=x(s), s of Rn'l) in the device.
Thus I is a point in 1 dimension, a curve in 2 dimensions and a
surface in 3 dimensions. Of course one curve or surface has to

) | SRR

be used for each junction. Since the procedure is the same for
each of the junctions it is demonstrated only for one Jjunction.
In the case of an exponentially graded doping profile C consists

e, e,

‘ 3 I} *

of two parts: R

K
-
N
-

C=C" +C" (2.20)

where C~and C" are discontinous, C~ is piecewise smooth and C" is
exponentially decaying to zero away from . 1In the vicinity of r
the expansion (2.19) is not valid and has to be supplemented by a
"layer” term acording to the singular perturbation analysis:

.

(- -]
wEA) = Ewi )+ wis /1AL, w=@hn,p) T (2.21)
i=0

'
e s 4 4y

-9-
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Here the following coordinate transformation has been
employed: For a point in the vicinity of ' s denotes the
parameter value at the nearest point on P and t denotes its
distance perpendicular to P (ct. Fig. 1). Thus the solution of
the semiconductor equations exhibits internal layers at
pn-junctions.

_ The w; and w; in (2.21) can now be determined separately and
the structure of the solution is given by its partition into the
smooth part iw;-ll and its rapidly varying part ZWI'Zl. ws has
to satisfy the reduced equations:

0= n; - p; -C~ (2.22)
div (grad n; - n;-gradqz) = -R" (2.23)
div (grad p; + p;-gradQG) = =R~ (2.24)

For the sake of simplicity but without loss of generality
the mobilities Pn and have been assumed to be constant.
(2.22)-(2.24) 1is subject to the boundary conditions (2.6)-(2.9).
Of course the condition of vanishing space charge is redundant
with (2.22). Since C~ is discontinous at I' and (2.22)-(2.24)
represents a second order system of two equations four “"interface
conditions™ have to be imposed at ['. They are of the form:

ngre ¥y g = o b|a 4 (2.25)
p;°e"5l-,;,§_ = pg'e%,;”.‘.+ (2.26)
“no Bl = Taodliaa, (2.27)
Posillgag. = 35o'ﬁl|§.;+ (2.28)

where wl;_ and w];+ denote the onesided limits of w as X tends to
" from each sige. ﬁl denotes the unit normal vector on . 3;
and 3;0 are the zeroth order terms of the smooth parts of thg
(scaled) electron and hole current densities.

-10-
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3;0 = grad ng - ngegrad Y If?é
(2.29) Oy

R - -. RN
Jpo grad po + porgrad W T
(2.22)~(2.24) together with (2.25)-(2.28) and the boundary Ei:

conditions (2.6)-(2.9) define the reduced problem whose solution
is an 0(1) approximation to the full solution away from . As we :
will see in the next chapter the reduced problem is a useful tool é}-
for the development and analysis of numerical methods, since it Fﬁi
{especially the conditions (2.25)-(2.28)) has to be solved EiEi
implicitly by any discretisation method which requires a o
reasonable number of grid points. g

The equaticng for the rapidly varying parts wI reduce to }l{
ordinary differential equations. That means that only
derivatives with respect to the "fast® variable t/A occur. Since
the rate of decay of w; depends heavily on Y the width of the
layer grows with the applied voltage; a fact which is absolutely

well known by device physicists,  but which becomes nicely
apparent by the singular perturbation approach.

3. Numerical Solution of the Semiconductor Equations

In this chapter we discuss some of the problems occuring in
the numerical solution of the semiconductor equations and the
analysis of existing numerical methods., From the viewpoint of
numerical analysis there are essentially four major topics to be
considered. The first one is the type of discretisation to be
used. There exist programs for both Finite Element and Finite
Difference discretisations of the system (2.1)-(2.5). As
outlined in the previous chapter the solution exhibits a smooth
behaviour in some subregions of the domain whereas in others it
varies rapidly. Thus a nonuniform mesh is mandatory and adaptive
mesh refinement is desirable. So the second topic 1is the
question how to set up the mesh refinement algorithm i.e. which
quantities have to be used to control the mesh, Each type of
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L2
discretisation will 1lead to a large sparse system of nonlinear :}1
equétions and so the solution of this system is the third topic. ?3
As fourth topic we discuss linear equations solvers which have to 5?
be used in topic three. For topics one to three many methods i}
have been designed especially for the semiconductor equations. !&
These points will be discussed in this chapter. For topic four )Q
standard numerical analysis is commonly used and SO its :ﬂf
discussion will be deferred to chapter four. For the sake of ﬂj
simplicity in nomenclature we shall only consider the )
two~dimensional case in this chapter. However, all results given !4
in the following can be generalized to three dimensions in a ‘i}
straightforward manner. So, the equations are posed in a domain -
D of Rz and X = (x,y)T denotes the independent variable.

3.1 Discretisation Schemes

Using Finite Elements or Finite Differences one has to take
into account that Poisson's equation (2.1) is of a different type
than the continuity equations. Poisson's equation - in the
scaling of Markowich /40/ using the variables (@Y,u,v)

l?-div grad Y = eqlu - e'qtv -C (3.1)

is a singularly perturbed elliptic problem whose right hand side
has a positive derivative with respect to Y. Thus it is of a
standard form (as discussed in e.g. /22/) except for the
discontinous or exponentially graded term C. Equations of that
type are generally well behaved and it suffices to apply a usual
discretisation scheme, In the case of Finite Differences
equation (3.1) is discretized by:

A2. (aiv grad, W s = nyy - pyy - Clxg,yy) (3.2)
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Ele1/2,5 = Wiy, 37%, 40/

L

. (3.3)
E{ g1z = W, 5007%, 4 7%y i
By = X417%y0 Ky = Y447V
(aiv grad Wy 4 = 2(EQ,) 5 g = B{ 1 5, 4)/(hy*hy ) + 5-
+ 28] 5410 = BY yoy 00/ tkytRyp) (3.4)
Here qgj, niy and Pij denote the apﬁroximations to Y, n and ;j
p at the gridpoint (x,,y,). Et+1/2,j denotes the value of JYdx —

at (xy,) o= (X+x4,9)/2, ¥y« B yi1/2 denotes the value of dWdy
at (x40 yj+1/2-(yj+yj+l)/2). If one of the neighbouring
gridpoints (x1+1'yj)' (xi-llyj)l (xi'yj*'l)' (xi'yj-l) does not
exist - as possible in a terminating line approach /1/, /2/ or in
the Finite Boxes approach /24/ - (3.4) has to be modified. We
will go into some detail concerning these modifications in the
next section. In the case of Finite Elements classical shape
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functions can be used (i.e. linear shape functions for triangular
elements, bilinear shape functions for rectangular elements).

It turns out that the discretisation of the continuity
equations is more crucial than the discretisation of Poissons's
equation. The usual error analysis of discretisation methods
provides an error estimate of the form:

max lwh-wl <= ¢-H (3.5)

i denotes the numerical approximation to w(x,y)c(th,p)T.
H denotes the maximal gridspacing. The constant ¢ will in
general depend on the higher order derivatives of w. The
singular perturbation analysis /41/ shows that derivatives of ¥,
n® and p~ in (2.21) are of magnitude oxA™3) - o(A™4) locally near
the junction (A is defined in (2.17)). /41/ shows also that,
even if a nonuniform mesh is used, the amount of gridpoints
required to equidistribute the error term in (3.5) can be
proportional to 272 which is of course prohibitive. Therefore a
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discretisation scheme is needed where the constant c¢ in (3.5) !%
does not depend on the higher derivatives of the rapidly varying ‘ :ﬁ;
terms W', n” and p”. For the case of Finite Differences such a f[5
scheme was given by Scharfetter and Gummel /50/. They .
approximate:
-
In = grad n - n'grad @ (3.6) 3
- " s
div J_ = 33%/8x + 33¥/y = r (3.7) =
by: ié;
% - PUW,, W 4)/2)° (R g -Ny ()/hy = R
ni+1/2,3 141,37, 4 1+1,3704,4) /By L
- (ni,j+ni*10j)/2.(wi"’l'j-vi,j)/hi
v (3.8)
Jni'jq.l/z = Y((Wi’j+1-1',_'j)/2)'(ni,jﬁ-ni‘j)/kj -
- (ni'j+ni‘j+1)/2‘(‘i’i'j,,l"l’i'j)/kj
¥(s) = s-coth(s)
X _ X
2:n34172,9 = Ing-ry2,3)/(hythy ) ¢
RS ¢ -3y -
* 200904, 54172 ~ Ing,3-172)/ytRyoy) = Ry g (3.9)

J§1+ s2,§ denotes the value of J: at (xg,) /0= (X3+%,,1)/2,
yj). J“i,j+1/2 denotes the value of Jg at (xi,
Yj+l/2'(yj+yj+1)/2)' The continuity equation for holes 1is
discretized analogously. Scharfetter and Gummel gave a physical
reasoning for the derivation of their scheme. Markowich et al.
/41/ proved that in one dimension the Scharfetter-Gummel scheme
is uniformly convergent. That means that the error constant c in
(3.5) does not depend on the derivatives of ¥, n” and p” in
{2.21) and therefore not on A. For two dimensions /41/ shows
that the choice P(s) = s.coth(s) is necessary for uniform
convergence. Exponentially fitted schemes like the Scharfetter-
Gummel scheme have been analyzed by Kellog /34/, /33/ and Doolan
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/17/ (for different classes of problems). The reason for the
uniform convergence of these schemes is that inside the
pn~-junction layers the interface conditions (2.25) and (2.26) are
satisfied automatically if |grady| is large and the gridspacing
is not O(A).

-
.

The results for Finite Difference schemes suggest that a
similiar approach (like the exponentially fitted schemes) should
be used in the case of Finite Elements, This fact has been
intuitively observed by Engel /21/ for the one-dimensional case.
A modeling group at IBM has tried to make use of the Scharfetter-
Gummel scheme £dr Finite Elements in two and three space
dimensions /9/, /8/, /12/. However, we have the impression that
their approach needs still quite a bit of analysis, although {t
has been used effectively by other modelists too e.g. /49/.
Macheck /36/ has tried to develop a more rigorous discretisation
for Finite Elements using exponentially fitted shape functions.
He uses classical bilinear shape functions for ¥ and

d)(x,y) = (1 - P(x,¥)]-[1 ~ P2(x,y)] (3.11)
&2(x,y) = O (x,y) (1 - $a(x,¥)]
d3(x,y) = ¥ (x,y) « Pa(x,y)

@4(x,¥) = [1 - P(x,y)]) Pa(x,y)

for u, and

Piix,y) = [1 - @1(x,¥)) 1 -~ @2(x,¥)] (3.12)
P2(x.y) @) (x,y) (1 - @2(x,¥)] Y
Piix,v) o1 (x,y) - ®2(x,y) '
Patx,y) = (1 - @)(x,¥)1° @2(x,¥)

| |
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[
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PrL(x,y) = f(x,g!xr) (3.13)
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' o1(x,y) = £(x,- g?‘-') —d
».
#2(x,y) = £(y,- 33') o

3 with: f(x,a) = (exp(ax)-l)/(exp(a)-1) (3.14)

P AM

The advantage of these shape functions is that they
accomodate nicely the layer behaviour of the solution. They
degenerate into the ordinary bilinear shape functions when the

} electric potential is constant. In order to be able to switch
. from <coarse to fine grid spacing in different subdomains
" transition elements have to be used (as outlined in the next
section). However, no theoretical investigations have been
carried out so far to analyse the uniform convergence properties
of this method.

3.2 Grid Construction

g Since subregions of strong variation of Y, n and p alternate
é with regions where these quantities behave smoothly (i.e. their
gradients are small) different meshsizes are mandatory in these
subregions. Thus the discretisation scheme should be able to
. switch locally from a coarser to a finer grid. For the
= exponentially fitted (Scharfetter-Gummel) Finite Difference
discretisation schemes this is done by the Finite Boxes approach
/24/. Grid lines can terminate when the mesh is likely to be
coarsened (cf. Fig.2). The point (xi+1,yj) does not belong to
the mesh. Thus the equations for the point (xi.yj) have to be

- modified since qg+l'j, “i+1,j and pi+l,j are not available. This
~ is done by proper interpolation between the (j-l)-st and (j+l)-st
- y-level. So (div grad qnij is approximated by:
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(div grad q»i'j = :}
X pX - oy
= 2 0ky ) Biuy 2,941 ¥ K3 Biarg2, 3010/ (Rytkyn) d
X
= Ej1/2,5)/(Bythyy) * o
.y - gy %3
* 20 (B 30172 T Bl y-1720/ ythyny) (3.15) .
x y ,
31-1/2,3' Ei,j+1/2 etc. are defined in (3.3). The !&
continuity equations are approximated by: -
X

2 (kg "Tngar 2,901 * Ky Tngens2,9-107 gteyoy) -
x —
= Jngo1/2,4)/thythy ) * R

c(g? -3 -
+ 2005 ge1/2 = Thy,q-1/2)7 (Ky*tkyop) = Ry g (3.16)

Jﬁi-llz'j, in,j+1/2 etc. are defined in (3.8). For reasons
of numerical stability only one gridline is allowed to terminate
at a box. This approach is a generalisation of the "Terminating
Line" approach introduced by Adler /1/, /2/ as already mentioned.

In the Finite Element approach of Macheck /36/ transition
elements composed of three triangles are used to coarsen the mesh
locally (cf. Fig.3). Within these triangles a different set of
shape functions has to be used. They are derived by holding the
current densities jn and 3 constant along the edges of a
triangle similar to the approach of /10/.

In the Finite Element as well as in the Finite Difference
{(Boxes) approach the gquestion arises which criteria should be
used to generate the mesh, If the user of a simulation program

has to define his elements or nodes a priori as input parameters,
this could perhaps be done by experience /10/. However, if -~ as
it is the case for modern user oriented programs - an adaptive
mesh selection is desired mathematically formulated criteria are
< a "sine qua non". Generally such criteria should satisfy two
- conditions. Firstly they should not cause the program to

- ’ construct more gridpoints/elements than necessary to achieve a
. certain accuracy. Secondly they should guarantee that a R
" -17- 5
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prescribed relative accuracy d is really achieved once they are -!]

,; satisfied. A usual way to design adaptive mesh refinement fﬂj
'y procedures is to equidistribute the local truncation error of the f;ﬁ
discretisation scheme. In the case of Finite Differences this fi;

- error is proportional to the meshsize and the third and fourth ;‘é
. derivatives of §, n and p. Markowich /41l/ however showed that it .“1
o is practically not possible to equidistribute this quantity. In }ﬂ;
"f the case of a simple MOS-transistor 0(d”2A”2) gridpoints would be Sji
required. On the other hand the singular perturbation analysis :%;

shows that the solution of the difference scheme approximates the i;}

solution of the reduced problem (2.22)-(2.24) even if this R

criterion is not satisfied inside the layer regions (inversion ff;

layer and space charge regions). Therefore the quantity to be ;jﬂ

equidistributed is the discretisation error of Poisson's equation ;Ei

(i.e. the partial derivatives of the space charge times the
meshsizes). This equidistribution can be relaxed inside the
pn-junction layers by e.g. simply 1limiting the number of
gridpoints there.

-

3.3 Linearisation Schemes

Each discretisation scheme (Finite . Differences or Finite
Elements) will lead to a large sparse system of nonlinear
eguations to be solved. The theory of iterative methods to solve
these equations is to a large extent independent of the used
discretisation and so it is convenient to view the whole problen
as solving a nonlinear system of equations iteratively by solving
linear systems. The existing numerical methods can essentially
be divided into two classes: The first approach, a block
nonlinear iteration algorithm, is due to Gummel /29/ and uses the ti
fact that the current relations are linear in the variables u and {‘R
v (as defined in (2.1l1)). In these variables the equations R
become (again we use the scaling of /36/): ?

o
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lz-dlv grad Y = eq'-u - e-q'-v -C (3.17) .
. s W w
div Jn =R, J, =e'egradou . {3.18) RN
3 o

daiv 3; = =R, Jp = -e-q[gtad v (3.19) ot

Gummels approach works as follows: Given (\l'.u.v)k Q*+1 is
computed by solving:

+1 +1
A%.aiv graa §*! - Mk e"d‘ wk-c (3.20)

subject to the appropriate boundary conditions. Then uk+1

and vk+1 are computed from:

. . 1“*1 (3.21)
div Jk+1 = R(grad Q*‘l,uk.vk), Jk*l =@ grad uk+1
n n

. . -qﬁ*l (3.22)
div JS*I = -R(grad Q**l,uk,vk), J:+1 = -g *grad vk+1

together with the boundary conditions for u and v. (3.21)
and (3.22) are two decoupled linear equations for u**! ana vk*l,
Poissons's equation (3.20) is nonlinear in this setting and
therefore it has to be solved iteratively itself in each step by
8 Newton 1like method. Since Newton's method is an inner
iteration within the overall iteration process (3.20)-(3.22) it
may not be necessary to let this inner iteration "fully converge”
/27/. 1t could for instance be considered to do only one Newton
step for each iteration. This would lead to the linear equation:

A2.aiv grad qf*l = (e"‘-uk + e'q*-vk)-(ﬂﬁ+1-1*) +

s ¥k s Wk e (3.23)
instead of (3.20). The advantage of Gummels's method is obvious.
(3.20)~(3.22) can be solved sequentially which decreases the
required amount of storage and computing time drastically for
each step. However, bad convergence properties can be observed
in the case of high currents. This is explained by viewing
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(3.20)-(3.22) as iterating the map M: (uk,v¥)®(u¥*1,v**1) Ghere
the evaluation of M involves the solution of (3.20). Then the
norm of the linearisation of M (as an operator acting in the
appropriate spaces) at the fixpoint M(u*,v.)-(u',v') is
proportional to the current densities /42/.

The second approach to the solution of the nonlinear
equations (2.1)-(2.5) is a damped modified Newton method. To
solve the general equation F(x)=0 one computes the sequence <xk>

by:

Mk-‘k - -F(xk), xk+1 - xk + tk-‘k (3.24)

k k

For the usual Newton method M~ = F'(xk) and t = 1 holds.
Bank and Rose /4/ have given criteria for the choice of the
damping parameters tk which guarantee global convergence,
Moreover they investigate how well Jk has to approximate the
classical Newton step in order to get a certain rate of
convergence. They obtain that the rate of convergence is p
(1<p<2) if:

[MK-d¥ + F(xX)| = o(]F(xX)|P) (3.25)

holds asymptotically for k ¥ oo. Alternatively Bank and Rose /3/
suggested Mk = k1 4 F'(xk) where A* is proportional to [F(xk)l.
Franz /24/ tested this method with good success. However, he
additionally chooses damping parameters ek according to Deuflhard
/15/, /16/.

Since this approach has the disadvantage that all three
equations are solved simultaneously - and therefore the storage
requirements are fairly large - we suggest a Block-Newton-SOR

method /24/. Defining F-(Fl,Fz,F3)T Newton's method at step k
is:
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ar, 3, 3r;
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Under

use a classical block iteration scheme (iteration
the solution of the k-th Newton step:

g;} o 0
31?23?20
o &

3!3 ar; Ir3
o

Since the coefficient matrix of

triangular
linear

systems

k

. Wok] = -
dok

........

F). Mlnklﬂ)
F2 ("’rnktpk)
F3 Nk'nkrf*)

L N i s

-

(3.26)

the assumption that the Jacobian is definite one can

K m+l

gk

. ‘nk = -sz,nk'pk)

o

EF3 N" 'nk 'Pk)

}Fl (‘]k,nk,pk) !

)

(3.27)

k

is

index m)

e
dnk
ok

for

(3.27)

block 1lower

one can decouple the elimination process into three

sequentially.

(3.28)~-(3.30)

which

have

%k. Pl o _py @K, nk,pk) - %lk dokm - ‘glk doim

o,

K ank ank
vl dnlortl o _po 4K,k pk) -ﬁ . qykmtl _5; . dpkm

%R. 4oL = _py @K, nk,pk) - tﬁv';k, dpxml :_:_‘_3", dnkm+l

=21~

. . -

to

be

solved

(3.28)

(3.29)

(3.30)

NN L i i e e
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This iteration method has (like Gummel's method) the ;:

= advantage that the equations can be solved sequentially. To end b
i}' up with the Block-Newton-SOR method one has to resubstitute the g
‘ﬁ_ series expansions on the right hand side of (3.28)-(3.30) and to s
ti' introduce a relaxation parameter ux ' ;:
'.‘ P
e (3.31) e
ﬁ:' N - L = o 7y K, nkd S, pRadpkom) S
(3.32) "‘

‘ (L7 o 1 ok S5
' ol dn = -w - Fp (o], ok, pkadpham) :

(3.33)

:_:_‘Qk. ol = gy - 3 QR nkigdniantl k)

This method gonverges linearly /48/. However, we sgill have
to perform thorough investigations in order to properly judge the
convergence properties.

4. Solution of Linear Systems

For any of the linearization procedures which have been
outlined in the last chapter a large sparse linear egquation ’
system (4.1) has to be solved repeatedly.

A*x = b (4.1) i

A has been derived by linearizing discretized PDEs. Hence A 4
has only five to nine nonzero entries per row and block (the oo
blocks are defined in (3.26)); A is very sparse. For the :iﬁ
solution of these special types.of linear systems of equations “
two classes of methods, can, in principle, be used: direct : !-.
methods which are based on elimination and iterative methods. An
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excellent survey on that subject has been published recently by
Duff /18/. Classical Gaussian elimination is not feasible for
our systems of equations because the rank of A in (4.1l) 1is very
large and A has many coefficients which are zero. Therefore,
modifications of the classical Gaussian elimination algorithm
have to be introduced to account for the zero entries. There
exist quite a few activities on that subject (c.f. /19/) and
powerful algorithms which treat the nonzero coefficients only are
. available (so called sparse matrix codes). Another serious x
h drawback of direct methods 1lies in the fact that the upper -—i
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triangular matrix which is created by the elimination process has
ﬁgz to be stored for back substitution. This matrix has usually more
'u nonzero entries than the matrix A. Therefore, memory requirement g
:;; of direct methods 1is substantial. One advantage of the linear ~ﬁ
o systems obtained from the discretised semiconductor equations is ;
that no pivoting in order to maintain numerical stability is
needed. 1In spite of all drawbacks of direct methods, their major
advantage is high accuracy of the solution. However, we feel
that for the semiconductor problems iterative algorithms are to
emphasize. Nevertheless we and many others have observed
difficulties with respect to the convergence speed of iterative
methods, so that the direct methods, which require an exactly
predictable amount of computer resources, will always stay in
consideration,

The fundamental idea of :elaxatiqn methods (which are the
best established iterative methods) is the splitting of the
coefficient matrix A (4.1l) into three matrices D, E, F (4.2).

A=D-E-F (4.2)

D denotes the diagonal entries of A; <-E denotes a lower
triangular matrix which consists of all sub-diagonal entries of
A; and ~F denotes an upper triangular matrix which consists of
all super-diagonal entries of A.

With an arbitrary non singular matrix B which has the same
rank as A the linear system (4.1) can be rewritten to (4.3):

-23-
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of A {4.2). The simplest scheme, the point-Jacobi method, uses D
for B, Matrix D is a diagonal matrix and, therefore, 1is easily
invertible. The Gauss-Seidel method uses D-E for B. The matrix
D-E is a lower triangular matrix. Therefore one has only to
perform a forward substitution process for its inversion. The !Fﬁ
successive overrelaxation method (SOR) uses a parameter W within h%:
the range ]0,2[. The iteration matrix B is defined: T

4 .
- -
Y
ff —
- . |
!l B'x + (A-B)*'x = b (4.3) S
£ _-1
<. One obtains an iterative scheme by setting: ot
oy e
- B-x**! = b - (a-B) -x¥ (4.4) ]
) *
, (4.4) can be solved for xk+1: U
= «**1 = (1-87l.a)-x% + B7Lp (4.5) o
:; The scheme (4.5) will converge if condition (4.6) holds: ;;?
ez-87l.a) ¢ 1 (4.6) e
{4.6) is a necessary and sufficient condition where ¢ f;ﬁ

denotes the spectral radius /64/. Any relaxation method can be i;i

derived by differently choosing the matrix B from the splitting )

B =D/wWw-E - (4.7)

Since B is again a lower triangular matrix, its inversion is
instantly reduced to a substitution.

The major advantage of these iterative methods lies in their
simplicity. They are very easy to program and demand only low
memory requirement. As already noted, they converge if condition
(4.6) holds. However, this is generally difficult to prove. A
sufficient condition for convergence is that A is positive

definite (4.8) which 1is the normal case for five-point-star
discretized PDEs.

- xT-A-x 3 0 for all x0 | (4.8) 5
& -24- ':{Q
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It should be noted again here that the current relations and
continuity equations are not self adjoint if (Y, n,p) are used as -
variables (see (2.10), (2.11)). However, the transformation: .
n = ewou' p = e-wnv R {(4.9) ..t-
results in a similarity transformation of the iteration matrix in )

(4.6). Thus the spectral radius of the iteration matrix 1is not
influenced and the same convergence properties are obtained as if
the system had been discretized in its self adjoint form with
(Y,u,v) as variables.

Pl BRI

CTRL e

Some point-iterative schemes can by accelerated gquite
remarkably with the conjugate gradient method or the Chebyshev :
method. An excellent survey on these topics can be found in

/28/.

Various activities can be observed for the development of
more powerful algorithms with the advantages of iterative
schemes. One of the best known algorithms which has been
established in semiconductor device analysis is Stone's strongly
implicit procedure /58/. Stone’s idea was to modify the original l;
coefficient matrix A by adding a matrix N (whose norm is much -
smaller than the norm of A) se¢ that a factorization of (A+N) -

involves less computational effort than the standard e
decomposition of A, Assuming this has been done, the development .
of an iterative procedure is then fairly straightforward because I§

the equation can be written as:
(A+N) x = (A+N)*x + (b=A-x) (4.10)

which suggests the iterative procedure:

T, e
iR _ a3 s . L

(A+N) «x**1 = (asN) -xX + (b-A-x¥) (4.11) N
When the right hand side is known and if (A+N) can be :E
factorized easily, (4.1l1l) gives an efficient method for directly
solving for xk+l, Furthermore, one would intuitively expect a L-

rapid rate of convergence if N is sufficiently small compared to
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. A. We will refrain from explaining in detail Stone's suggestion }k;
of how to choose the perturbation matrix N because this has been -
done thoroughly in many publications e.g. /23/, /55/, /58/. A
major disadvantage of Stone's method is that it is only
applicable for 1linear systems obtained by a classical Finite
Difference discretisation. It is not applicable for systens
obtained by the Finite Boxes approach or the general Finite
Element approach.

There exist a few algorithms which are similar to Stone's
method in terms of underlying ideas. The most attractive are the
method of Dupont et al. /20/, the "alternating direction
implicit"” methods e.g. /6/, /23/, /66/ and the Fourier methods
/57/, /64/. However, most of these sophisticated algorithms lack
general applicability.

No matter which iterative method is used one has to deal
with the question of an appropriate termination (convergence)
criterion. Usually (4.12) 1is applied with a properly chosen
relative accuracy €:

|xk*tloxk| < g-|xK*] (4.12)

Since increments still accumulate when (4.12) is already
satisfied we suggest to use (4.13) instead of (4.12):

pxK*oxk] < g0 1xKtL) - (- (o)) (4.13)

®(G) can be estimated as i® |xk+1-xk|/|xk-xk-1].

k¥o0
One disadvantage of all strongly implicit methods and also R
the direct methods is that they cannot be implemented efficiently o
on a computer with a pipe-line architecture (vector processor). fi:ﬁ

Some comments on that subject have been given in /18/.
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S. A Glimpse on Results .

As an illustrative example a relatively ‘simple structure, a ;;:i
two dimensional diode, is chosen. Fig. 4 shows the doping Ciij
profile as birds-eye-view plot. A substrate with 1014cm3 if:i
acceptor concentration and an exponentially graded n-region with &;%
10]'9cm°3 maximum doping is assumed. The initial mesh is "1

RN
e T
» o't
PR

. PRI

P N

B ! LY

automatically generated from the doping profile and the geometry
definition. The simulation domain (device geometry) is a square
of 100p times 100Pm size. At the n-region an ohmic contact with

PR

v
)
2Lp

length 20pm is assumed. The substrate is fully contacted. The s
initial mesh for a Finite Boxes program is shown in Fig. 5 and _{{f
for a Finite Element program in Pig. 6. The point allocation |is jfﬁf
identical for both representations. The grid consists of 121 U
points versus 178 when all gridlines are extended throughout the ;ig

device. This clearly demonstrates the advantage of the Finite
Boxes approach. In Finite Element representation one has to deal
with 80 rectangular elements and 17 transition elementas which
consist of 51 triangles.

Fig. 7 shows the final grid for an operating condition. of
0.7V forward bias in Finite Boxes representation. This mesh is s
obtained after several adaption processes using the criteria ii?j
given in chapter 3. It consists of 270 points'(vetsus 480 for g
the classical approach). 1In Fig. 8 the potential distribution is =?=
drawn. From this plot and even better from the electron density

(Fig. 9) one nicely can deduce the effects of high injection. {}j
E.g. the substrate is flooded with carriers. Fig, 10 shows the S
magnitude of the electron current density. The peak value is 5§k2
about 180 A/cm2, The sharply pronounced peak which exists at the ;;i
transition of the Dirichlet boundary condition to the Neumann . ﬂ‘_q

boundary condition corresponds to a singularity of the carrier o
densities. Physically interpreted this effect is well known as o
i contact-corner-current-crowding.

5 . Fig, -11 shows the final grid for an operating condition of
~20V (reverse) bias in Finite Element representation. This mesh
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consists of 363 points (625 for classical Finite Differences)
which correspond to 277 rectangular elements and 41 transition
elements (123 triangles). The electron density for this
operating point is given in Fig. 12. One nicely observes the f;?

depletion region and the typical shape of the drop of cthe T e d
electron density in that region owing to thermal generation. 1In 5;:
Fig. 13 the magnitude of the electron current density is drawn. .-
The singularity at the contact corner is, although it still E::
exists, not so pronounced. Note that there are about seven }i;
orders of magnitude difference in the peak value compared to Fig. ;:A
10. !!!$

6. Conclusion

In this paper we have presented an analysis of the steady ;?;
state semiconductor equations and the impact of this analysis on -
the design of device simulation programs. By appropriate scaling
we have transformed the semiconductor equations into a singularly
perturbed elliptic system with nonsmooth data. Information
obtained from the singular perturbation analysis has been used to
investigate stability and convergence of discretisation schemes
with particular emphasis on the adaptive construction of PN
efficient grids. We have reviewed algorithms for the solution of N
nonlinear and linear systems of the discretized semiconductor
equations. An example has demonstrated the power and flexibility
a device simulation program can achieve when using the
information we have presented for program design.
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particular, criteria for an optimal mesh generation strateqy are given. The
iterative solution of the systems of nonlinear and linear equations obtained
by discretising the semiconductor equations is discussed. An example is given
showing the power of these concepts combined with modern numerical methods in
comparison to classical approaches.
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